Selasa, September 16, 2008

A supercomputer is a computer that is at the frontline of processing capacity, particularly speed of calculation (at the time of its introduction). The term "Super Computing" was first used by New York World newspaper in 1929[1] to refer to large custom-built tabulators that IBM had made for Columbia University.

Supercomputers introduced in the 1960s were designed primarily by Seymour Cray at Control Data Corporation (CDC), and led the market into the 1970s until Cray left to form his own company, Cray Research. He then took over the supercomputer market with his new designs, holding the top spot in supercomputing for five years (1985–1990). Cray, himself, never used the word "supercomputer"; a little-remembered fact is that he only recognized the word "computer". In the 1980s a large number of smaller competitors entered the market, in a parallel to the creation of the minicomputer market a decade earlier, but many of these disappeared in the mid-1990s "supercomputer market crash". Today, supercomputers are typically one-of-a-kind custom designs produced by "traditional" companies such as Cray, IBM and HP, who had purchased many of the 1980s companies to gain their experience.

The Cray-2 was the world's fastest computer from 1985 to 1989.
The Cray-2 was the world's fastest computer from 1985 to 1989.

The term supercomputer itself is rather fluid, and today's supercomputer tends to become tomorrow's ordinary computer. CDC's early machines were simply very fast scalar processors, some ten times the speed of the fastest machines offered by other companies. In the 1970s most supercomputers were dedicated to running a vector processor, and many of the newer players developed their own such processors at a lower price to enter the market. The early and mid-1980s saw machines with a modest number of vector processors working in parallel become the standard. Typical numbers of processors were in the range of four to sixteen. In the later 1980s and 1990s, attention turned from vector processors to massive parallel processing systems with thousands of "ordinary" CPUs, some being off the shelf units and others being custom designs. Today, parallel designs are based on "off the shelf" server-class microprocessors, such as the PowerPC, Opteron, or Xeon, and most modern supercomputers are now highly-tuned computer clusters using commodity processors combined with custom interconnects.


Rabu, September 03, 2008

History of computing

The Jacquard loom was one of the first programmable devices.
The Jacquard loom was one of the first programmable devices.

It is difficult to identify any one device as the earliest computer, partly because the term "computer" has been subject to varying interpretations over time. Originally, the term "computer" referred to a person who performed numerical calculations (a human computer), often with the aid of a mechanical calculating device.

The history of the modern computer begins with two separate technologies - that of automated calculation and that of programmability.

Examples of early mechanical calculating devices included the abacus, the slide rule and arguably the astrolabe and the Antikythera mechanism (which dates from about 150-100 BC). The end of the Middle Ages saw a re-invigoration of European mathematics and engineering, and Wilhelm Schickard's 1623 device was the first of a number of mechanical calculators constructed by European engineers. However, none of those devices fit the modern definition of a computer because they could not be programmed.

Hero of Alexandria (c. 10 – 70 AD) built a mechanical theater which performed a play lasting 10 minutes and was operated by a complex system of ropes and drums that might be considered to be a means of deciding which parts of the mechanism performed which actions - and when.[3] This is the essence of programmability. In 1801, Joseph Marie Jacquard made an improvement to the textile loom that used a series of punched paper cards as a template to allow his loom to weave intricate patterns automatically. The resulting Jacquard loom was an important step in the development of computers because the use of punched cards to define woven patterns can be viewed as an early, albeit limited, form of programmability.

It was the fusion of automatic calculation with programmability that produced the first recognizable computers. In 1837, Charles Babbage was the first to conceptualize and design a fully programmable mechanical computer that he called "The Analytical Engine".[4] Due to limited finances, and an inability to resist tinkering with the design, Babbage never actually built his Analytical Engine.

Large-scale automated data processing of punched cards was performed for the U.S. Census in 1890 by tabulating machines designed by Herman Hollerith and manufactured by the Computing Tabulating Recording Corporation, which later became IBM. By the end of the 19th century a number of technologies that would later prove useful in the realization of practical computers had begun to appear: the punched card, Boolean algebra, the vacuum tube (thermionic valve) and the teleprinter.

During the first half of the 20th century, many scientific computing needs were met by increasingly sophisticated analog computers, which used a direct mechanical or electrical model of the problem as a basis for computation. However, these were not programmable and generally lacked the versatility and accuracy of modern digital computers.

Defining characteristics of some early digital computers of the 1940s (In the history of computing hardware)
Name First operational Numeral system Computing mechanism Programming Turing complete
Zuse Z3 (Germany) May 1941 Binary Electro-mechanical Program-controlled by punched film stock Yes (1998)
Atanasoff–Berry Computer (US) Summer 1941 Binary Electronic Not programmable—single purpose No
Colossus (UK) January 1944 Binary Electronic Program-controlled by patch cables and switches No
Harvard Mark I – IBM ASCC (US) 1944 Decimal Electro-mechanical Program-controlled by 24-channel punched paper tape (but no conditional branch) No
ENIAC (US) November 1945 Decimal Electronic Program-controlled by patch cables and switches Yes
Manchester Small-Scale Experimental Machine (UK) June 1948 Binary Electronic Stored-program in Williams cathode ray tube memory Yes
Modified ENIAC (US) September 1948 Decimal Electronic Program-controlled by patch cables and switches plus a primitive read-only stored programming mechanism using the Function Tables as program ROM Yes
EDSAC (UK) May 1949 Binary Electronic Stored-program in mercury delay line memory Yes
Manchester Mark I (UK) October 1949 Binary Electronic Stored-program in Williams cathode ray tube memory and magnetic drum memory Yes
CSIRAC (Australia) November 1949 Binary Electronic Stored-program in mercury delay line memory Yes

A succession of steadily more powerful and flexible computing devices were constructed in the 1930s and 1940s, gradually adding the key features that are seen in modern computers. The use of digital electronics (largely invented by Claude Shannon in 1937) and more flexible programmability were vitally important steps, but defining one point along this road as "the first digital electronic computer" is difficult (Shannon 1940). Notable achievements include:

EDSAC was one of the first computers to implement the stored program (von Neumann) architecture.
EDSAC was one of the first computers to implement the stored program (von Neumann) architecture.

Several developers of ENIAC, recognizing its flaws, came up with a far more flexible and elegant design, which came to be known as the "stored program architecture" or von Neumann architecture. This design was first formally described by John von Neumann in the paper First Draft of a Report on the EDVAC, distributed in 1945. A number of projects to develop computers based on the stored-program architecture commenced around this time, the first of these being completed in Great Britain. The first to be demonstrated working was the Manchester Small-Scale Experimental Machine (SSEM or "Baby"), while the EDSAC, completed a year after SSEM, was the first practical implementation of the stored program design. Shortly thereafter, the machine originally described by von Neumann's paper—EDVAC—was completed but did not see full-time use for an additional two years.

Nearly all modern computers implement some form of the stored-program architecture, making it the single trait by which the word "computer" is now defined. While the technologies used in computers have changed dramatically since the first electronic, general-purpose computers of the 1940s, most still use the von Neumann architecture.

Microprocessors are miniaturized devices that often implement stored program CPUs.
Microprocessors are miniaturized devices that often implement stored program CPUs.

Computers that used vacuum tubes as their electronic elements were in use throughout the 1950s. Vacuum tube electronics were largely replaced in the 1960s by transistor-based electronics, which are smaller, faster, cheaper to produce, require less power, and are more reliable. In the 1970s, integrated circuit technology and the subsequent creation of microprocessors, such as the Intel 4004, further decreased size and cost and further increased speed and reliability of computers. By the 1980s, computers became sufficiently small and cheap to replace simple mechanical controls in domestic appliances such as washing machines. The 1980s also witnessed home computers and the now ubiquitous personal computer. With the evolution of the Internet, personal computers are becoming as common as the television and the telephone in the household.


Type of Network Computer

Types of networks

Below is a list of the most common types of computer networks in order of scale.

[edit] Personal Area Network (PAN)

Main article: Personal area network

A personal area network (PAN) is a computer network used for communication among computer devices close to one person. Some examples of devices that are used in a PAN are printers, fax machines, telephones, PDAs or scanners. The reach of a PAN is typically within about 20-30 feet (approximately 6-9 meters).

Personal area networks may be wired with computer buses such as USB[1] and FireWire. A wireless personal area network (WPAN) can also be made possible with network technologies such as IrDA and Bluetooth..

[edit] Local Area Network (LAN)

Main article: Local Area Network

A network covering a small geographic area, like a home, office, or building. Current LANs are most likely to be based on Ethernet technology. For example, a library may have a wired or wireless LAN for users to interconnect local devices (e.g., printers and servers) and to connect to the internet. On a wired LAN, PCs in the library are typically connected by category 5 (Cat5) cable, running the IEEE 802.3 protocol through a system of interconnection devices and eventually connect to the internet. The cables to the servers are typically on Cat 5e enhanced cable, which will support IEEE 802.3 at 1 Gbit/s. A wireless LAN may exist using a different IEEE protocol, 802.11b or 802.11g. The staff computers (bright green in the figure) can get to the color printer, checkout records, and the academic network and the Internet. All user computers can get to the Internet and the card catalog. Each workgroup can get to its local printer. Note that the printers are not accessible from outside their workgroup.

Typical library network, in a branching tree topology and controlled access to resources
Typical library network, in a branching tree topology and controlled access to resources

All interconnected devices must understand the network layer (layer 3), because they are handling multiple subnets (the different colors). Those inside the library, which have only 10/100 Mbit/s Ethernet connections to the user device and a Gigabit Ethernet connection to the central router, could be called "layer 3 switches" because they only have Ethernet interfaces and must understand IP. It would be more correct to call them access routers, where the router at the top is a distribution router that connects to the Internet and academic networks' customer access routers.

The defining characteristics of LANs, in contrast to WANs (wide area networks), include their higher data transfer rates, smaller geographic range, and lack of a need for leased telecommunication lines. Current Ethernet or other IEEE 802.3 LAN technologies operate at speeds up to 10 Gbit/s. This is the data transfer rate. IEEE has projects investigating the standardization of 100 Gbit/s, and possibly 40 Gbit/s.

[edit] Campus Area Network (CAN)

Main article: Campus Area Network

A network that connects two or more LANs but that is limited to a specific and contiguous geographical area such as a college campus, industrial complex, or a military base. A CAN may be considered a type of MAN (metropolitan area network), but is generally limited to an area that is smaller than a typical MAN. This term is most often used to discuss the implementation of networks for a contiguous area. This should not be confused with a Controller Area Network. A LAN connects network devices over a relatively short distance. A networked office building, school, or home usually contains a single LAN, though sometimes one building will contain a few small LANs (perhaps one per room), and occasionally a LAN will span a group of nearby buildings. In TCP/IP networking, a LAN is often but not always implemented as a single IP subnet.

[edit] Metropolitan Area Network (MAN)

A Metropolitan Area Network is a network that connects two or more Local Area Networks or Campus Area Networks together but does not extend beyond the boundaries of the immediate town/city. Routers, switches and hubs are connected to create a Metropolitan Area Network.

[edit] Wide Area Network (WAN)

Main article: Wide Area Network

A WAN is a data communications network that covers a relatively broad geographic area (i.e. one city to another and one country to another country) and that often uses transmission facilities provided by common carriers, such as telephone companies. WAN technologies generally function at the lower three layers of the OSI reference model: the physical layer, the data link layer, and the network layer.

[edit] Global Area Network (GAN)

Main article: Global Area Network

Global area networks (GAN) specifications are in development by several groups, and there is no common definition. In general, however, a GAN is a model for supporting mobile communications across an arbitrary number of wireless LANs, satellite coverage areas, etc. The key challenge in mobile communications is "handing off" the user communications from one local coverage area to the next. In IEEE Project 802, this involves a succession of terrestrial Wireless local area networks (WLAN).[2]

[edit] Internetwork

Main article: Internetwork

Two or more networks or network segments connected using devices that operate at layer 3 (the 'network' layer) of the OSI Basic Reference Model, such as a router. Any interconnection among or between public, private, commercial, industrial, or governmental networks may also be defined as an internetwork.

In modern practice, the interconnected networks use the Internet Protocol. There are at least three variants of internetwork, depending on who administers and who participates in them:

  • Intranet
  • Extranet
  • Internet

Intranets and extranets may or may not have connections to the Internet. If connected to the Internet, the intranet or extranet is normally protected from being accessed from the Internet without proper authorization. The Internet is not considered to be a part of the intranet or extranet, although it may serve as a portal for access to portions of an extranet.

[edit] Intranet

Main article: Intranet

An intranet is a set of networks, using the Internet Protocol and IP-based tools such as web browsers and file transfer applications, that is under the control of a single administrative entity. That administrative entity closes the intranet to all but specific, authorized users. Most commonly, an intranet is the internal network of an organization. A large intranet will typically have at least one web server to provide users with organizational information.

[edit] Extranet

Main article: Extranet

An extranet is a network or internetwork that is limited in scope to a single organization or entity but which also has limited connections to the networks of one or more other usually, but not necessarily, trusted organizations or entities (e.g. a company's customers may be given access to some part of its intranet creating in this way an extranet, while at the same time the customers may not be considered 'trusted' from a security standpoint). Technically, an extranet may also be categorized as a CAN, MAN, WAN, or other type of network, although, by definition, an extranet cannot consist of a single LAN; it must have at least one connection with an external network.

[edit] Internet

Main article: Internet

The Internet is a specific internetwork. It consists of a worldwide interconnection of governmental, academic, public, and private networks based upon the networking technologies of the Internet Protocol Suite. It is the successor of the Advanced Research Projects Agency Network (ARPANET) developed by DARPA of the U.S. Department of Defense. The Internet is also the communications backbone underlying the World Wide Web (WWW). The 'Internet' is most commonly spelled with a capital 'I' as a proper noun, for historical reasons and to distinguish it from other generic internetworks.

Participants in the Internet use a diverse array of methods of several hundred documented, and often standardized, protocols compatible with the Internet Protocol Suite and an addressing system (IP Addresses) administered by the Internet Assigned Numbers Authority and address registries. Service providers and large enterprises exchange information about the reachability of their address spaces through the Border Gateway Protocol (BGP), forming a redundent world-wide mesh of transmission paths.

(From Wikipedia)

READ MORE - Type of Network Computer

Recomended Link

Real Estate Ekosulistio Training Pupuk Hayati Freedom Banner Store Pasuruan Personal Blog Real Estate FriendsterQ YuwieQ Largo siwawan Gitar Keren Abah Rafi Jacky TeamTouring AskMsRecipe CRESTEC Wellness AlexaBaliTeam Tamsil Grace AUTOMOTIVE TipsKeluarga Jhoice Fashion Blog chexosfutsal BloggerAdicter nuqiah arie almacafe azlina Civilnotes myoopie Wyne Herry Maxi Prem aneez Shalini Kaka CoretanAba BaliDreamHome Maya hery sys NOva Ocim Trik Yuwie Lyla Sydrix HC AffiliteProgram chebonshawo Ratna BlueDianni Attayaya LuvFeeling Software Sunil MP3 Mercy Edhoy CrankDesigner Chrishiella BeeBill Ardi33 Iffat Dochi Dromeish Nanang SDA CRESTEC Aldy Nabel Pink Free MP3 Ponco IndoRockstar Best PTC Patromax Vrman Dimensiberita TechBeacon satriyo NARTI Nophie hckvismo FIAN Udinmduro UCUP Bangari Mind Author Eris-Agustian Deogracias Boen Xander Gooddell AryoSP Jinchuiricki Die Silver Flower Bordir Tourism Fiqyud Eightsun Khrisna masBhakti Viar About Samarinda FreeZipe World Cricket Free Download Software Rohman Jual Beli Ayam laga Danny Rahardja Fauzy Blekenyek Uliiah Black MyGoblog Pulsa Murah dan joss John Boy Book DeadBeatSuperAffiliate AlexandrkrulikProducts Sticker Outdoor Voice Plate TWHITE laurenhuston affiliatemarketingmission Money Making Site Of New Astronomy Los Angeles Adult Ruins Of War Pixerr hyperfbtraffic Roofing Charlotte The Phantom's Fixation social intellect in the social era Dating Via Social Media GourmetOrchards Social Media Etiquette StartMyNewBusiness Real Estate Gama Pulsa celebrity Home Improvement Automotive Parts Berita Mojokerto Hosting Mojokerto